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Introduction.

There are six chalcogenobispyridine isomers, whose
structures are 2,2'-(1), 2,3'-(2), 2,4'-(3), 3,3'-(4), 3,4-(5) and
4.4'-(6). In 1987 Summers [1] reviewed the chemistry of
the chalcogenobispyridines and showed that only two com-
plete families of six isomers (the oxy- and thiobispyridines)
have been synthesized; syntheses of only the 2,2'- and 4,4
selenobispyridines were recorded, while none of the
tellurobispyridines had been generated. Recently, Summers
and coworkers [2-14] have achieved the synthesis of all the
isomers of the chalcogenobispyridines.
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The wide range of biological and industrial applications
displayed by the oxy- and thiobispyridines warrants a thor-
ough and systematic review of the synthesis of these com-
pounds. For example, 2,2'-oxybispyridine is a suitable lig-
and for a cobalt carbonyl complex catalyst, and so is useful
in the hydroformylation of olefins [15-16]. 2,3'-
Oxybispyridine is claimed to have both psychotropic and
bactericidal properties [17], whereas 3,3-oxybispyridine
and its N-oxides have been found to influence the learning
ability of mice [18]. In case of the thiobispyridines, the
2,2'- isomer shows pronounced activity against streptococ-
cus infections of rabbits [19] and also some anti-thyroid
[20-21], anti-bacterial, anti-fungal and anti-tumor activity
[22). 2,4'-Thiobispyridines have been patented as bacteri-
cides, fungicides and herbicides [23], with substituted 44'-
thiobispyridines [23] being patented as bactericides, fungi-
cides, herbicides, nematocides and pesticides. 4,4'-
Thiobispyridine is itself an effective promoter of electron
transfer to cytochrome C at a gold electrode [24-26] and
has been patented as an additive in photosensitive layers
for electrophotography [27]. The biological activity of
seleno- and tellurobispyridines have not yet been explored.

Conformational analysis of the chalcogenobispyridines
is an important precursor to understanding their biological
activity [28-29]. The four postulated structures of the
chalcogenobispyridines (for the case of 3,3"-oxy-
bispyridines) are shown in Figure 1: A planar structure; B
the "Morino" structure which is based upon electron dif-
fraction [30], dielectric relaxation [31] and infrared spec-
troscopy [32-33] studies; C a structure in which both
rings are rotated at various angles relative to the C-O-C
plane, which is based upon investigations of molar Kerr
constants [34-35], optical anisotropy [36], dielectric relax-
ation [37], uv spectroscopy [38] and vibrational spec-
troscopy [39]; D the "butterfly” structure with both phenyl
rings orthogonal to the C-O-C plane. The conformational
properties of the chalcogenobispyridines, calculated by
Dunne, Summers and von Nagy-Felsobuki [9-10,13-
14,39-40] using ab initio methods, show that the preferred
confirmation of these congeners vary only slightly down
the group. As anticipated, there is a contraction of the
inter-ring angle and an elongation of R¢.x bond lengths
for congeners down the group. In all cases, the minimum
energy structures are predicted by the STO-3G(*)//STO-
3G(*) models to be of the "propeller’ (C) or Morino' (B)
forms with an almost perpendicular attitude being main-
tained between the ring planes. Hence, while some of the
isomers of chalcogenobispyridines closely mimic the con-
formational behavior of diphenyl ether, the presence of
ortho ring-nitrogens in isomers containing a 2-pyridyl
group results in structural relaxation, due to the removal
of neighboring ortho-hydrogen interactions.

Figure 1. A-D Conformers for 3,3'-Oxybispyridine.

As an extension of our work [1-14,39-40] we are now
able to report a thorough and systematic study of syn-
thetic pathways to all the isomers of chalcogeno-
bispyridines. The lack of data in this area, makes this
review of the synthesis of these twenty-four compounds
timely, especially since little experimental work has been
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documented on the metal ligand properties of the more
electron-dense members of this family.

IL. Oxybispyridines.

The first preparation of 2,2'-oxybispyridine (9) was
recorded in 1957 by de Villiers and den Hertog [41] and
involved heating the silver salt of 2-hydroxypyridine (7)
together with 2-iodopyridine (8) to give 2,2'-oxybispyri-
dine (9) in moderate yield [3,41]. The di-p-toluenesul-
fonate salt of 2,2'-oxybispyridine had been reported ear-
lier as a by-product of the reaction of picolinic acid
1-oxide with p-toluenesulfonyl chloride [42]. A number
of substituted 2,2"-oxybispyridines have been prepared by
reaction of activated 2-halopyridines with substituted
2-hydroxypyridines using modifications of this procedure
[43-45]. The dehydration of 2-hydroxypyridine in ben-
zene solution at 170° under pressure also leads to the gen-
eration of 2,2'-oxybispyridine [46-47].
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The parent and some substituted 2,3'-oxybispyridines
have been prepared by reaction of 3-hydroxypyridines (eg
10) with 2-halopyridines (eg 11) [41,45,48-50]. The reac-
tion of pyridine 1-oxide with 2-pyridyl p-toluenesulfonate
[51], 2-pyridyl p-toluenesulfonyl chloride [41] or 2-bro-
mopyridine [52-53] also lead to the generation of 2,3'-
oxybispyridine (12). 2-Pyridyl p-toluenesulfonate under-
goes a thermal reaction to give a low yield of 2,3'-oxy-
bispyridine [41]. Derivatives of 2,3'-oxybispyridine have
been detected upon pyrolysis of 1-(5-nitro-2-pyridyl)-3-
hydroxypyridinium chloride [54] and photolysis of 1-(5-
nitro-2-pyridyloxy)-4,6-diphenyl-2-pyridone {55].
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2,4'-Oxybispyridine (15) has been obtained Rockley
and Summers [6] by heating 4-nitropyridine (14) between
200° and 250° with the silver salt of 2-hydroxypyridine
(13). A substantial amount of 1-(4-pyridyl)-4-pyridone
was generated as a by-product. The reaction of a 2-halo-
pyridine with 4-hydroxypyndines in the presence of base
[45] has led to the synthesis of a number of substituted
2,4'-oxybispyridines.
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Barker and Summers [7] reacted 3-bromopyridine (17)
with 3-hydroxypyridine (16) in a sealed tube at 180° in
the presence of potassium carbonate and cuprous oxide
leads to the generation of 3,3™-oxybispyridine (18). In a
more complicated process, 3-bromopyridine 1-oxide was
reacted with the potassium salt of 3-hydroxypyridine in
the presence of copper to afford 3,3'-oxybispyridine-1-
oxide which was deoxygenated with iron in acetic acid to
give 3,3'-oxybispyridine (18) [56]. Similarly, 3-fluoro-4-
nitropyridine 1-oxide was reacted with 3-hydroxypyridine
to give 4-nitro-3,3"-oxybispyridine 1-oxide, which was
converted to 3,3'-oxybispyridine by reduction of the N-
oxide and nitro functionalities, followed by deamination

K2CO3/Cu20

procedures [57].
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3,4'-Oxybispyridine (20) has been synthesized by heat-
ing 1-(4-pyridyD)pyridinium chloride (19) with 3-
hydroxypyridine (16) [58].
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The first authentic synthesis of 4,4'-oxybispyridine (22)
was reported in 1976 when it was formed in low yield
(4%) by the reaction of pyridine 1-oxide with
trichloroacetyl chloride [59]. 4,4'-Oxybispyridine is also
formed in low yield by reaction of 1-(4-pyridyl)pyri-
dinium chloride (19) with 4-hydroxypyridine [58].
Heating the silver salt of 4-hydroxypyridine (22) with 4-
nitropyridine (14) also leads to the formation of 4,4'-0xy-
bispyridine, although still in moderate yield [5]. 3,3',5,5'-
Tetranitro-4,4"-oxybispyridine has been prepared by dehy-
dration of 3,5-dinitro-4-hydroxypyridine with p-toluene-
sulfonyl chloride in the presence of N,N-diethylaniline
[60].
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III. Thiobispyridines.

The first synthesis of 2,2'-thiobispyridine (24) was
recorded in 1937 and involved the reaction of 2-bromopyri-
dine (11) with cupric thiocyanate in methanol [61]. A more
widely used method of preparing the parent and substituted
2,2'-thiobispyridines involves reacting 2-halopyridines with
2-mercaptopyridines (23) in hot benzene [62-64].
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The reaction of 2-halopyridines with sodium sulfide or
other alkali metal sulfides also leads to the formation of
2,2-thiobispyridines [65-69]. Yields in this process have
been improved by use of phase transfer catalysts {70].
Potassium hydrogen sulfide [71-72], thiourea [43,73-75],
thioacetamide [75], diethyl phosphothioates {76] and 2-
mercaptobenzimidazole [77] can all be substituted for
sodium sulfide. Heating 2-mercaptopyridine alone at 240°
gives 2,2'-thiobispyridine in 80% yield [78], while heating
1-(2-pyridyl)pyridinium iodide with 2-mercaptopyridine
[79-80] also leads to its formation in more moderate yield.

The formation of 2,3'-thiobispyridine (26) in 90% yield
was achieved by heating 2-mercaptopyridine (23) with 3-
mercaptopyridine (25) at 160° in ligroin [78]. Reaction of
2-amino-5-iodopyridine with 2-mercaptopyridine in the
presence of sodium methoxide gave 6'-amino-2,3'-thio-
bispyridine [81] and similarly, condensation of 3-mercap-
topyridine with 2-chloro-3-nitropyridine gave 3-nitro-2,3'-

thiobispyridine [82].
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Heating 1-(4-pyridyl)pyridinium chloride (19) with 2-
mercaptopyridine (23) afforded 2,4'-thiobispyridine (27)
in good yield [79-80]. 2- and 4-Mercaptopyridine reacted
with activated 4- and 2-halopyridines giving a number of
substituted 2,4'-thiobispyridines [82-83]. In an interesting
reaction, 3-nitro-4-chloropyridine reacted with the sodium
salt of 2-mercapto-3-hydroxypyridine to give 3-hydroxy-
3'-nitro-2,4'-thiobispyridine which immediately ring-
closed to a dipyridooxathiin [50].

23 27

The reaction of 3-mercaptopyridine (25) with 3-bro-
mopyridine (17) in the presence of cuprous oxide and
potassium carbonate in a sealed vessel at 180° affords
3,3'-thiobispyridine (28) in 63% yield [8]. The reaction of
3-bromopyridine 1-oxide with potassium hydrogen sul-
fide in the presence of cupric ions at 140° to gave 3,3'-
thiobispyridine 1,1'-dioxide. Deoxygenation with phos-
phorous trichloride in chloroform gave 3,3'-thiobispyri-
dine [84]. The reaction of 3-bromopyridine (17) with
sodium sulfide in dimethyl sulfoxide at 150° also leads to
the formation of 3,3'-thiobispyridine in low yield [85].
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Related methods utilize thiourea and thioacetamide in

place of sodium sulfide [86-87]. 6,6"-Dihydroxy-3,3'-thio-

bispyridine is formed in 13% yield from the reaction of 2-

hydroxypyridine with sulfur dichloride at 200° [88] and

6,6'-bis-(2-pyridyl)-3,3'-thiobispyridine is obtained by

heating the sodium salt of 2,2"-bipyridine-5-sulfonic acid
K,C05Cu50

at 500-600° [2].
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3,4'-Thiobispyridine (30) has been formed in 95% yield
by heating 4-mercaptopyridine (29) with 3-mercaptopyri-
dine (25) at 140° in ligroin [78].
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4 4'-Thiobispyridine (31) was first obtained in 1939 as a
by-product of the reaction of 4-mercaptopyridine (29)
with chlorine in acetic acid [89]. The reaction of 4-mer-
captopyridine (29) with 4-chloropyridine affords 4,4'-thio-
bispyridine in good yield and modifications of this proce-
dure have been used for the synthesis of a number of sub-
stituted 4,4'-thiobispyridines [83,90-93]. 4-Mercapto-3-
nitropyridine and 2-bromopyridine in the presence of cop-
per powder surprisingly gives 3,3'-dinitro-4,4'-thiobispyri-
dine {90]. Reactions of 4-halogenated pyridines and 4-
halogenated pyridine 1-oxides with thiourea, potassium
hydrogen sulfide, hydrogen sulfide, sodium thiosulfate or
sodium sulfide also lead to the synthesis of 4,4'-thio-
bispyridines and 4,4'-thiobispyridine 1,1'-oxides respec-
tively [93-102]. The reaction of 2,3,5,6-tetrabromo-4-
methylsulfonylpyridine with sodium hydrogen sulfide
affords perbromo-4,4'-thiobispyridine [103].

1-(4-Pyridyl)pyridinium chloride and related salts react
with 4-mercaptopyridine, thiourea or hydrogen sulfide to
give 4,4'-thiobispyridines [79-80,104-105], sometimes in
90% yield. 4,4-Thiobispyridine (31) is also obtained by
heating 4-mercaptopyridine (29) in high boiling solvents
like decalin until evolution of hydrogen sulfide ceases
[106]. The reduction of pyridine-4-sulfonyl chloride with
hydrazine [107] and the rearrangement of pyridine-4-
thione-1-carboxylates with heat and light [108] leads to
the formation of 4,4'-thiobispyridine in moderate yield.
The reaction of z-butyllithium with 2-¢-butyl-4-methylth-
iopyridine [98,109] and 4-hydroxy-2,6-di-z-butylpyridine
with phosphorus pentasulfide {98] produces some
2,2'.6,6'-tetra-t-butyl-4,4'-thiobispyridine. 4-Lithio-
2,3,5,6-tetrachloropyridine reacts with sulfur dichloride to
give octachloro-4,4'-thiobispyridine, while its reaction
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with thionyl chloride leads to the generation of both the
thiobispyridine and its corresponding sulfoxide [110]. 3-
Nitro-4-thiocyanatopyridine reacts with alkali or hot
aliphatic alcohols to give 3,3'-dinitro-4,4'-thiobispyridine

[111-112].
SH
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IV. Selenobispyridines.

Prior to 1992, only two of the selenobispyridines - the
2,2'- and 4,4'-isomers were characterized. In 1978, Grant
and Summers [4] prepared 2,2'-selenobispyridine (32) in
80% yield by condensation of pyridine-2-selenol (33)
with 2-bromopyridine (11). In a later synthesis, 2,2'-
selenobispyridine was formed in 65% yield by treating the
2-pyridylselenolate anion (generated from the sodium
reduction of 2-methylselenylpyridine) with 2-bromopyri-
dine in hexamethylphosphoramide (HMPA) at 120° [113].
2,2'-Selenobispyridine has also been reported as a by-
product in the generation of bis-(2-pyridyl) diselenide
from lithium diselenide and 2-bromopyridine in tetra-
hydrofuran (THF) and HMPA [114] and in the preparation
of 2-pyridyl phenyl selenide {115].
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In 1992 Dunne ef al. [11] obtained 2,2'-selenobispyri-
dine (32) in 88% yield by the reaction of 2-bromopyridine
(11) with pyridine-2-selenol (33) in 2-ethoxyethanol. The
pyridine-2-selenol was generated in situ from 2-bromo-
pyridine and sodium hydrogen selenide, the latter being
obtained from the reduction of selenium powder with
sodium borohydride in 2-ethoxyethanol by adaptation of
the method reported by Klayman and Griffin [116]. This
procedure represents an improvement over the earlier
method [4], since the isolation of the pyridine-2-selenol is
not required. While sodium hydrogen selenide could be
generated quite readily in ethanol [116], its reaction with
2-bromopyridine was found not to proceed in this solvent,
necessitating the use of 2-ethoxyethanol. Compared with
the reduction of elemental selenium with sodium borohy-
dride in ethanol, the corresponding reaction in 2-
ethoxyethanol was very exothermic, requiring careful
addition of solvent to the dry-mixed reactants.

Similarly, Dunne et al. [11] obtained 2,4'-selenobispyri-
dine (34) in 80% yield by reaction of 4-bromopyridine
(35) with pyridine-2-selenol (36) in 2-ethoxyethanol. It
was found to be a yellow oil.

S.J.Dunne, L. A. Summers, and E. I. von Nagy-Felsobuki
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4,4'-Selenobispyridine (36) has been generated by reac-
tion of 1-(4-pyridyl)pyridinium chloride (13) with hydro-
gen selenide in pyridine solution. Some of the corre-
sponding diselenide is formed as a by-product [105].
Instead of hydrogen selenide, potassium or sodium hydro-
gen selenides have been used to produce 4,4'-seleno-
bispyridine and its polyalkylated derivatives [117-118].
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Dunne et al. [11] found that the preparation of the
remaining isomers required the generation of the previ-
ously unknown pyridine-3-selenol (37) (although the cor-
responding anion has been reported [113]). In a similar
method to the synthesis of pyridine-3-thiol, pyridine-3-
selenol was generated from the reduction of the corre-
sponding chalcogenocyanate. The preparation of the new
3-selenocyanatopyridine (38) was achieved by diazotiza-
tion of 3-aminopyridine followed by reaction of the pyri-
dine-3-diazonium salt (39) with potassium selenocyanate
[11]. The 3-selenocyanatopyridine was reduced to pyri-
dine-3-selenol with sodium borohydride in 2-
ethoxyethanol. Without isolation, the pyridine-3-selenol
was then reacted with either 2- or 4-bromopyridine to
give 2,3"- or 3,4'-selenobispyridine (40,41) respectively,
both in good yield.
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Dunne et al. [11] obtained the 3,3'-selenobispyridine
(42) from 3-bromopyridine (17) and pyridine-3-selenol
(37) by heating them together at 180° in a sealed tube in
the presence of potassium carbonate and cuprous oxide in
an analogous method to the reported syntheses of 3,3-
oxybispyridine [7] and 3,3'-thiobispyridine [8]. This syn-
thesis required the isolation of pyridine-3-selenol, which

2-bromopyridine
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was achieved by adjusting the pH of the solution to ~5.5
(after reduction of 3-selenocyanatopyridine) with a con-
centrated sodium hydroxide solution, followed by an
extraction with chloroform. The product was obtained as
a dark yellow oil with a disagreeable odor in 75% yield.
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V. Tellurobispyridines.

Dunne et al. [12] prepared 2,2'-tellurobispyridine (43)
by two methods. The first involved the sodium borohy-
dride reduction of 2,2'-dipyridyl ditelluride (44) [13] in 2-
ethoxyethanol to form sodium 2-pyridyltellurolate (45),
which was refluxed with 2-bromopyridine to afford 2,2'-

tellurobispyridine in 83% yield.
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The second method involved the thermal detellurization
of 2,2'-dipyridyl ditelluride (46). The ditelluride was
heated to 175° for 1 hour to obtain the monotelluride in
68% yield. Increased reaction times and temperatures
resulted in the decomposition of the product to elemental
tellurium and tars [12].

2,4'-Tellurobispyridine (47) was prepared by the reaction
of sodium 2-pyridyltellurolate (45) with 4-bromopyridine
hydrochloride (48) in 2-ethoxyethanol in 69% yield [12].
This reaction was found not to proceed in ethanol nor did
the analogous reaction of sodium 4-pyridyltellurolate with
2-bromopyridine occur in ethanol. The latter reaction was,
however, also performed in 2-ethoxyethanol resulting in a
low yield of 2,4'-tellurobispyridine.
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Dunne et al. [12] prepared 4,4'-tellurobispyridine (49)
as a 13% by-product in the synthesis of 4,4'-dipyridyl
ditelluride [13]. Thermal detellurization of 4,4'-dipyridyl
ditelluride (50) was initiated at 80° and gave the mono-
telluride in 94% yield.
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Dunne et al. [12] used an adaptation of the method of
Engman [11] for the generation of 3,3'-tellurobispyridine
(51). 3-Aminopyridine undergoes diazotization reactions
in fluoroboric acid leading to the formation of 3-pyridyl
diazonium tetrafluoroborate (52). This salt was then
added to a chilled solution of potassium tellurocyanate
in DMSO under nitrogen. Stirring at ambient tempera-
ture for 2 hours led to the formation of 3,3'-telluro-
bispyridine in 38% yield, which is comparable to the
yields reported by Engman [11] for related compounds
[12]. Only a trace of 3,3'-dipyridyl ditelluride was
detected in this reaction (due to its red coloration) and
was easily separated from the monotelluride by chro-
matography [12].
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2,3'-Tellurobispyridine (53) and 3,4'-tellurobispyri-
dine (54) were prepared by Dunne ef al. [12] using an
adaptation of the method by Luxen and Christiaens
[17]. The reaction of 3-pyridyl diazonium tetrafluoro-
borate with 2,2'-dipyridy! ditelluride and 4,4'-dipyridyl
ditelluride respectively in chloroform in the presence
of potassium acetate and a catalytic amount of the
phase-transfer agent, 18-crown-6, led to the formation
of 2,3'- and 3,4'-tellurobispyridine in 58 and 68%
yields respectively. The crown ether increases the
nucleophilicity of the acetate ion, which attacks the
tetrafluoroborate salt to initiate a chain of reactions
leading to the formation of a 3-pyridyl radical. This
radical attacks the weak Te-Te bond of the ditelluride
to form the respective unsymmetrical monotellurides.
The reactions were performed at 0° and under nitro-
gen. To the author's knowledge, these are the first
examples in which diaryl ditellurides have been used

in this reaction.
e
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2,2"-Dipyridyl ditelluride
4,4'-Dipyridyl ditelluride
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VI. Conclusion.

A comprehensive study of the synthetic routes to all
isomers of the chalcogenobispyridines has been pre-
sented. New facile routes to previously reported com-
pounds have been summarized. The physical and biologi-
cal properties of the recently synthesized seleno- and tel-
lurobispyridines warrant further study based upon the
large number of applications of their lighter congeners.
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